Extensions 1→N→G→Q→1 with N=S3×C32 and Q=C6

Direct product G=N×Q with N=S3×C32 and Q=C6
dρLabelID
S3×C32×C6108S3xC3^2xC6324,172

Semidirect products G=N:Q with N=S3×C32 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C32)⋊C6 = S3×C32⋊C6φ: C6/C1C6 ⊆ Out S3×C321812+(S3xC3^2):C6324,116
(S3×C32)⋊2C6 = C2×S3×He3φ: C6/C2C3 ⊆ Out S3×C32366(S3xC3^2):2C6324,139
(S3×C32)⋊3C6 = S32×C32φ: C6/C3C2 ⊆ Out S3×C3236(S3xC3^2):3C6324,165
(S3×C32)⋊4C6 = C3×S3×C3⋊S3φ: C6/C3C2 ⊆ Out S3×C3236(S3xC3^2):4C6324,166

Non-split extensions G=N.Q with N=S3×C32 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C32).C6 = C2×S3×3- 1+2φ: C6/C2C3 ⊆ Out S3×C32366(S3xC3^2).C6324,141
(S3×C32).2C6 = S32×C9φ: C6/C3C2 ⊆ Out S3×C32364(S3xC3^2).2C6324,115
(S3×C32).3C6 = S3×C3×C18φ: trivial image108(S3xC3^2).3C6324,137

׿
×
𝔽